你的位置:首页 > 消费 > 正文

数据驱动|零束自增长地图引擎—智驾新阶段数字基石

作者:柳暮雪 2023-10-07 19:18  来源:盖世汽车  阅读量:6347   
文章摘要
在呼啸而至的智能驾驶风口中,高精地图被视为黄金搭档,但因制作难度大、准备周期长、绘制成本高等问题导致难以落地。为解决这些问题,业界提出了重感...

在呼啸而至的智能驾驶风口中,高精地图被视为黄金搭档,但因制作难度大、准备周期长、绘制成本高等问题导致难以落地。为解决这些问题,业界提出了重感知轻地图的思路,零束科技以全栈自研技术底座为基础,率先实现整车“一套定位、一张地图”的自增长地图引擎。基于“BEV+Transformer”数据闭环融合智驾解决方案,并结合零束自研的高精度融合定位技术,提供完整的城市Mapless及Map-free数据闭环能力,满足高速amp;城市NOA、记忆通勤等应用场景的需要,为用户带来有图无图一致的端到端智驾体验。

零束自增长地图定位引擎为地图保鲜

车端:利用感知大模型结合整车统一的“一套定位”建立道路拓扑并上传

通过车队和用户车辆感知及采集道路数据,利用视觉SLAM技术,融合车身IMU、轮速和GNSS等传感器信息对车辆位姿进行实时优化,保证在GNSS信号状态不佳时仍可高精度的对感知结果进行融合。

云端:局部与全局优化,拼接形成实时更新的全局整车一致的“一张地图”

云端生成地图

云端生成地图拼接

通过与合规图商的合作,使用云端地图服务器聚合多车辆采集的大量数据,保持全局地图的最新状态。对车端建图结果进行相关性分析,形成矢量图,矢量图进一步判断拓扑关系并压缩形成轻量级拓扑图,作为最终下游定位和规控算法的输入。

用户端:“一套定位”智能匹配云端地图数据,建立车-云-用户数据闭环链路

云端根据GNSS信息实时将车辆一定范围的地图下发至用户端,定位算法根据感知模块的输出,融合IMU、轮速和GNSS等车身传感器对车辆所在位姿进行实时优化,精确定位车辆所在车道信息。

零束自增长地图引擎的应用场景

高速amp;城市NOA

为了弥补传统高精地图的方案缺陷,实现NOA的全场景覆盖,零束自增长地图引擎采取双管齐下的策略:一方面,为图商高精地图未覆盖路段提供全面补充,即“补图”,另一方面,上传并对比更新云端高精地图的错误或过时信息,即“修图”。在合规前提下,通过“补图”+“修图”的组合,进一步扩大高速amp;城市NOA使用范围,优化NOA使用体验。

通勤NOA

特别针对用户高频熟路通勤场景,零束自增长地图引擎实现了在自车端实时采集、建立、更新路径上的地图数据。用户可通过自主完善整条道路上的地图信息,在没有高精地图的区域,仍能为用户提供几乎一致的NOA体验,让用户的数据最终服务于用户。

未来,随着智能车数量的增长,数据规模的扩容,零束自增长地图引擎可获得源源不断的数据支撑,一方面将持续地保障地图的鲜度,一些热点区域甚至可以达到日更,另一方面增量式的地图将进一步拓展城市地图的广度和深度。零束银河?智驾计算平台利用AI大模型和车云一体数据闭环不断迭代升级,充分发掘数据价值和潜力,赋予智能车数字学习新智慧,迎接智能驾驶新阶段新挑战。

郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。

分享到:
Copyright 2014-2020 免责声明 http://www.cshy5.cn 网站首页| 投诉与建议 | 网站地图 | |备案号: 闽ICP备2022005363号-4 认证